Two-Color Data Processing

DIALS 6

May 27, 2015

Tara Michels-Clark

Introduction

- XFEL pulses separated in energy and time
 - Self seed pulses may be used for experimental phasing
 - SASE two color pulses at different time separations used to study radiation damage

Self-seeded 90eV separated shot

SASE 60eV separated shot

Introduction

Two Color Lysozyme Diffraction

Image courtesy of Soichi Wakatsuki

Processing the Measured Two Color Data

General Protocol:

- Determine two color shots using FEE (Front End Enclosure) spectrometer
- Match the time stamps to images (mod_spectrum_filter)
- run Diffraction filter (hit_finder)
- Index the two color hits
- Predict spots and integrate

Filtering using FEE

Self Seeded Two Color Filter criteria

- Peak positions
 - Used average peak position over each run
 - Narrow range for low energy peak ±5 pixels
 - Wide range for high energy peak ±100 pixels
- Peak height relative to regions before, after and between peaks
- Peak ratios

FEE Spectrum

Average Spectrum Run 84

Low energy peak position ~130 pixels

High energy peak position ~760 pixels

Indexing Overview

- Three main parts:
 - 1. Calculate reciprocal lattice vectors from spot centroid positions
 - 2. Analyze reciprocal lattice vectors for periodicity
 - Shortest vectors are binned and analyzed for a unique basis
 - 3. Best candidate crystal matrix (most consistent with centroid positions) and reciprocal lattice vectors are used to calculate *hkl* values

$$\mathbf{h} = \mathbf{A}^{-1} \mathbf{r}$$

Indexing Spots from Two Wavelengths

 FFT algorithm based in real space* to calculate candidate basis using two wavelength functional

$$F_{\lambda}(\mathbf{x}(\boldsymbol{\psi},\boldsymbol{\theta})) = \sum_{j} \cos(2\pi \mathbf{r}_{j}(\lambda_{1}) \cdot |\mathbf{x}| \hat{\mathbf{u}}(\boldsymbol{\psi},\boldsymbol{\theta})) + \sum_{j} \cos(2\pi \mathbf{r}_{j}(\lambda_{2}) \cdot |\mathbf{x}| \hat{\mathbf{u}}(\boldsymbol{\psi},\boldsymbol{\theta}))$$

- Calculate fractional hkls from rlps
- Rlp with smallest difference norm from integer hkl is assigned to the corresponding wavelength
- If more than one spot at the same wavelength can be assigned to the same hkl → assign it to the closest one.

^{*} Gildea, R. J., Waterman, D. G., Parkhurst, J. M., Axford, D., Sutton, G., Stuart, D. I., Sauter, N. K., Evans, G. & Winter, G. (2014). Acta Cryst. D70, 2652-2666.

Indexing Spots from Two Wavelengths

 Overlapped spots in the low resolution region are assigned to the average wavelength

Spot separation as a function of resolution

Indexing Results

- Spot Centroid
- Valid Pixel (inside spot)
- Overlapped Spot
- Low Energy Spot (or λ₁≈1.386 Å)
- High Energy Spot (or $\lambda_2 \approx 1.372$ Å)

Integration

- Select the best candidate orientation matrix based on RMSD and area under the green curve
 - Reject outliers based on Sauter and Poon (2010) outlier rejection algorithm
 - Reindex
 - Delta psi outlier rejection
 - Select orientation with smallest green curve volume
- Integrate each experiment separately using same crystal model for each

RMSD Outlier Rejection

spots with the largest deviation from the expected cumulative Rayleigh probability distribution are rejected

Sauter, N. K. and Poon, B. K. (2010). J. Appl. Cryst. **43**, 611-616.

Initial RMSD and Displacement Vectors

After RMSD Outlier Rejection

Further Optimizing Crystal Model

- Nave parameters* based on the crystal model are calculated
 - Effective domain size D_{eff}
 - Mosaicity η
- Based on these calculations the Δψ limits are calculated

^{*}Nave C (2014). "Matching X-ray beam and detector properties to protein crystals of different perfection." *Journal of synchrotron radiation* **21**

Δψ Crystal Model Optimization

- Spots outside of $\Delta \psi^*$ limit are rejected
 - Remaining spots are reindexed using candidate orientation matrix (matrices)
 - The candidate orientation matrix yielding the smallest green curve volume ($\Delta \psi$ spread due to larger effective mosaicity) is retained.

^{*}Sauter NK, Hattne J, Brewster AS, Echols N, Zwart PH, Adams PD (1 Dec 2014): "Improved crystal orientation and physical properties from single-shot XFEL stills." Acta Crystallogr. D Biol. Crystallogr. 70, 3299-309

Δψ Plot Prior to Outlier Rejection

Δψ Plot After Outlier Rejection

Future Work

- Reprocessing both data set with best filter parameters
- Analyze statistics of integration results
- Spot deconvolution for overlapped spots in low resolution region

Acknowledgements

Berkeley National Lab

Nicholas Sauter Muhamed Amin

Tara Michels-Clark

Iris Young

Nat Echols

Paul Adams

Peter Zwart

Vittal Yachandra

Junko Yano

Jan Kern

James Holton

Janelia Farm

Johan Hattne

LCLS

Uwe Bergmann

Alberto Lutman

...and many others

Diamond Light Source

David Stuart
Gwyndaf Evans
Graeme Winter
Jonathan Grimes
Richard Gildea
James Parkhurst

CCP4

David Waterman

Luis Fuentes-Montero

UCLA

David Eisenberg
Duilio Cascio
Michael Sawaya
Jose Rodriguez
Luki Goldschmidt

Stanford School of Medicine

Soichi Wakatsuki Ulf Lundström **IBS**

Jacques-Philippe Colletier

Stanford University

Axel Brunger

Mona Uervirojnangkoorn

Artem Lyubimov

Oliver Zeldin

SSRL

Mike Soltis
Ana Gonzalez
Ashley Deacon
Aina Cohen
Yingssu Tsai
Scott McPhillips

BNL

Allen Orville

NIH/NIGMS grants 1R01GM095887 and 1R01GM102520 DOE/Office of Science contract DE-AC02-05CH11231

Filtering using FEE

SASE Two Color Filter criteria

- Peak positions
 - Peaks were restricted to be ±10 eV from iron edge (7112 eV)
- Peak ratios
 - Restricted to be 0.10

FEE SASE Spectrum

25000

20000-15000-10000-5000-7060 7080 7100 7120 7140 7160 7180 eV

Accepted Shots Average FEE Spectrum Run 132

Run 132 35053 events 13581 rejected

